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Today, diverse communities of zooxanthellate corals thrive, but do not build reef, under a wide range of en-
vironmental conditions. In these settings they inhabit natural bottom communities, sometimes forming
patch-reefs, coral carpets and knobs. Episodes in the fossil record, characterized by limited coral-reef devel-
opment but widespread occurrence of coral-bearing carbonates, may represent the fossil analogs of these
non-reef building, zooxanthellate coral communities. If so, the study of these corals could have valuable
implications for paleoenvironmental reconstructions. Here we focus on the evolution of early Paleogene
Zooxanthellate corals corals as a fossil example of coral communities mainly composed by zooxanthellate corals (or likely
Early Paleogene zooxanthellate), commonly occurring within carbonate biofacies and with relatively high diversity but
PETM with a limited bioconstructional potential as testified by the reduced record of coral reefs. We correlate
Nutrients changes of bioconstructional potential and community compositions of these fossil corals with the main
Ecological competition ecological/environmental conditions at that time. The early Paleogene greenhouse climate was characterized
Ocean acidification by relatively short pulses of warming with the most prominent occurring at the Paleocene-Eocene boundary
(PETM event), associated with high weathering rates, nutrient fluxes, and pCO-, levels. A synthesis of coral
occurrences integrated with our data from the Adriatic Carbonate Platform (SW Slovenia) and the Minervois
region (SW France), provides evidence for temporal changes in the reef-building capacity of corals associated
with a shift in community composition toward forms adapted to tolerate deteriorating sea-water conditions.
During the middle Paleocene coral-algal patch reefs and barrier reefs occurred from shallow-water settings,
locally with reef-crest structures. A first shift can be traced from middle Paleocene to late Paleocene, with
small coral-algal patch reefs and coral-bearing mounds development in shallow to intermediate water
depths. In these mounds corals were highly subordinated as bioconstructors to other groups tolerant to
higher levels of trophic resources (calcareous red algae, encrusting foraminifera, microbes, and sponges). A
second shift occurred at the onset of the early Eocene with a further reduction of coral framework-building
capacity. These coral communities mainly formed knobs in shallow-water, turbid settings associated with
abundant foraminiferal deposits. We suggest that environmental conditions other than high temperature de-
termined a combination of interrelated stressors that limited the coral-reef construction. A continuous en-
hancement of sediment load/nutrients combined with geochemical changes of ocean waters likely
displaced corals as the main bioconstructors during the late Paleocene-early Eocene times. Nonetheless,
these conditions did not affect the capacity of some corals to colonize the substrate, maintain biodiversity,
and act as locally important carbonate-sediment producers, suggesting broad environmental tolerance limits
of various species of corals. The implications of this study include clues as to how both ancient and modern
zooxanthellate corals could respond to changing climate.
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© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Diverse coral communities dominated by different kinds of zoox-
anthellate, colonial forms, occur today in a broad range of marine
settings where temperature, nutrients, light levels, and aragonite
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saturation fluctuate or remain close to what are considered thresh-
olds for coral survival (e.g., Kleypas et al., 1999). In these sites zoox-
anthellate coral assemblages with constructional potential are
developed with a composition comparable to that of coral reefs, how-
ever, they do not form a framework. These assemblages are often
characterized by high species richness and represent localized sites
of carbonate sediment production and accumulation (e.g., Benzoni
et al,, 2003; Moyer et al., 2003; Perry, 2003; Perry and Larcombe,
2003; Riegl, 2003; Halfar et al., 2005; Thomson and Frisch, 2010).
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These examples highlight the necessity for a distinction between
reef-building versus non reef-building corals as compared with sym-
biont bearing (zooxanthellate, z-corals) and non-symbiont bearing
(azooxanthellate corals, az-corals). Corals are traditionally catego-
rized as either hermatypic (reef building) or ahermatypic (non reef
building), which is often treated as being equivalent to zooxanthel-
late versus azooxanthellate. However, many kinds of both z- and az-
corals can build reefs only if the environment supports minimal depo-
sition (e.g., Hallock, 1988). Therefore, reef-building capacity is not
necessary correlated to algal symbiosis. Hosting zooxanthellae does
not translate into reef building if the environmental conditions do
not support hypercalcification and/or if the nutrient regime supports
bioerosion rates that exceed deposition rates (e.g., Pomar and
Hallock, 2008). Similarly, diversity and reef-building capacity are
not necessary correlated (as demonstrated for example by Johnson
et al,, 2008). If environmental conditions are conducive to either
hypercalcification or to minimal deposition, just a few species or
even a single species can build a carbonate mound or even a reef
(e.g., Porites-reefs during the Miocene, Pomar, 1991; modern Porites
reefs in east-central tropical Pacific, e.g., Cortés, 1997).

In this study we focus on the evolution of early Paleogene zoox-
anthellate corals (or zooxanthellate-like corals, for forms resembling
modern zooxanthellate corals see Rosen and Turn3ek, 1989), as a possi-
ble fossil analogs of these modern non-reef building, zooxanthellate
coral communities. The early Paleogene fossil record is characterized
by a lack of extensive coral reefs, although coral facies, dominated by
z- and z-like forms, have been reported commonly in shallow neritic fa-
cies (e.g., Drobne et al, 1988; Schuster, 1996; Baceta et al., 2005;
Zamagni et al., 2009). These coral assemblages were characterized by
constructional potential but a general limited reef-building capacity.

The early Paleogene experienced the most pronounced long-term
warming of the Cenozoic, starting in the late Paleocene (~59 Ma) and
culminating in the early Eocene (~51 Ma) with the Early Eocene Cli-
matic Optimum (EECO; Zachos et al.,, 2001). Short-term warming
events, known as hyperthermals, were superimposed on this long-
term warming trend, including most notably the Paleocene-Eocene
Thermal Maximum (PETM or ETM-1, Kennett and Stott, 1991), the
ETM-2 or “Elmo” event, (Lourens et al., 2005), and the ETM-3 or “X”
event (Agnini et al., 2009). These hyperthermals are characterized
by carbonate dissolution horizons and negative carbon isotope excur-
sions (CIE) (Lourens et al., 2005; Zachos et al., 2005; Nicolo et al.,
2007; Zachos et al., 2010). They are likely related to abrupt and mas-
sive releases of '>C-depleted carbon into the ocean-atmosphere sys-
tem (Dickens et al., 1995). The onset of the PETM was characterized
by rapid changes in terrestrial and marine biota, including the largest
extinction of benthic foraminifera (~40% of the species, e.g., Thomas,
2007) recorded during the Cenozoic. Pelagic ecosystems showed
rapid diversification with high origination and extinction levels in
planktonic foraminifera and calcareous nannofossils (e.g. Kelly et al.,
1998; Kelly, 2002; Bralower, 2002; Gibbs et al., 2006). On shallow-
water carbonate platforms, the rapid diversification of larger benthic
foraminifera has been related to the PETM (Orue-Etxebarria et al.,
2001; Scheibner et al., 2005). A causal link between the decreased
volume of coral reefs and the global warming events of the late
Paleocene-early Eocene time interval , particularly the PETM, has
been frequently suggested (Scheibner and Speijer, 2008a, b), based
on comparison with modern coral reef system responses to ongoing
increase of sea-water temperature. Such an actualistic approach is
not fully convincing, because what is happening today is much
more than bleaching, and includes increasing temperature, ocean
acidification, nutrient loading, increased (and increased variability
in) short-wavelength radiation caused by stratospheric ozone deple-
tion and coastal development (i.e., fluctuating delivery of photo-
protective tannins to coastal waters), transport of microbes world-
wide (e.g., Hallock, 2005 and references therein). A major difference
is that modern perturbations are not occurring in an ocean with

high calcium concentrations (e.g., Pomar and Hallock, 2008). Finally,
there are great differences between modern and early Paleogene coral
assemblages. For instance, Acropora-dominated communities that great-
ly promote the rate of modern reef growth are a relatively recent “inven-
tion” (Veron, 2000) with Acropora-dominated assemblages virtually
absent until the end of the Early Miocene (McCall et al., 1994). These as-
semblages can be hardly compared with any of the early Paleogene coral
communities. However, since the 1970s, acroporid species in the
Caribbean have experienced extreme and accelerating declines estimat-
ed at 90-98% (e.g., Aronson and Precht, 2001). Modern Caribbean might
represent a relatively good model for the Tethys in the early Paleogene.

The reduced reef-building potential of early Paleogene z-corals
(Scheibner and Speijer, 2008b), not mirrored by a decline of diversity
(e.g., Rosen, 2000), and the nature of these communities that survived
the most intense global warming event of the last 50 My, deserve a
more detailed study. To tackle this issue we critically screened and syn-
thesized the published literature with the aim to document the main
features and changes characterizing the coral assemblages throughout
the mid Paleocene-early Eocene time span and to investigate the possi-
ble responses to rapid and frequent environmental changes. These
questions have been addressed during our study of coral communities
from the Adriatic Carbonate Platform (SW Slovenia), where unexpected
diverse coral assemblages characterized late Paleocene microbialite-
coral mounds (Zamagni et al., 2009), and from the Minervois region
(SW France), where early Eocene diverse non-reef building coral assem-
blages thrived in deltaic, turbiditic shallow-water settings (Zamagni
and Mutti, 2007). Based on the present study, we suggest that the evo-
lution of these early Paleogene corals was a multi-step process triggered
by the progressive expansion of shallow-water settings characterized
by enhanced nutrients and sediment load associated with unfavorable
seawater composition (mainly acidification of shallow waters). These
conditions might have reduced coral calcification rates limiting their
possibility to build permanent reef structures. Nonetheless, coral assem-
blages maintained relatively high diversity and shifted toward assem-
blages dominated by sediment/nutrient tolerant forms.

2. Terminologies

Numerous definitions of coral reefs, reef frameworks, reef communi-
ties exist in the literature (for a review of terminology see, for example,
Riegl and Piller, 2000). According to Riegl and Piller (2000), the term reef
is used in this work to describe the development of three-dimensional,
biologically influenced buildups of coral framework and carbonate sed-
iments. The use of the term framework follows Fagerstrom (1987) as
denoting a mass of colonial, intergrown skeletal organisms. A further
distinction is between coral-algal patch-reefs as small buildups of
coral-algal framework, ecologically uniform in contrast to coral reefs
which are biogenic complex characterized by a distinct vertical zonation
displayed by the reef-building organisms. Coral-bearing mound is used
here to define carbonate bodies consisting of mud (biolcastic and/or pre-
cipitated in situ) with minor accounts of organic binding and skeletal or-
ganism, usually developed in deeper water setting. In these buildups
corals are highly subordinated to other skeletal organisms (mainly red
algae, microbes, encrusting foraminifera, sponges). The term coral-
bearing mound is used here as counterparts of coral reefs. Coral carpets
are defined according to Riegl and Piller (2000) as laterally more or less
continuous veneers of coral communities, which do not create a distinct
three-dimensionality and are ecologically uniform.

3. The early Paleogene and the late Cretaceous corals: something
in common

The long-term comparison between coral-reef accretion and coral
diversity based on the data from Kiessling and Baron-Szabo (2004)
shows that two parameters are closely correlated for all epochs except
for the late Cretaceous to late Paleocene-early Eocene interval. During
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that interval this relationship appears to be reversed, with a clear
decoupling between diversification of corals and coral-reef construction
(Fig. 1). After the K-T crisis, which caused ~30% generic extinction of
corals (Kiessling and Baron-Szabo, 2004), several important genera
with reef-building potential occurred during the mid Danian (Rosen,
2000), with the Paleocene corals being more prolific reef builders than
their latest Cretaceous counterparts (Kiessling and Baron-Szabo,
2004). Although coral reefs remained rare for most of the Paleogene
in terms of absolute recorded numbers, the volume of reefs produced
by corals increased during the Paleocene (Kiessling and Baron-Szabo,
2004). The volume dropped dramatically in the early Eocene, and
climbed again sharply in the late Oligocene (Kiessling and Baron-
Szabo, 2004; Kiessling and Simpson, 2011) (Fig. 1). This sharp decline
during the early Eocene, however, was associated with a continuous in-
crease of the coral community diversity throughout the Paleogene
(Rosen, 2000; Kiessling and Baron-Szabo, 2004) (Fig. 1). The evolution
of late Cretaceous reef systems is not a focus of this work, however, a
brief consideration of that time period helps to highlight some aspects
in the evolution of the early Paleogene corals. Late Cretaceous shallow
tropical shelves were mainly dominated by rudist bivalves as reef-
builders, with corals that rarely achieved rock-forming abundance
(e.g., Johnson et al, 2002). Despite this dominance, many studies
showed that diverse coral assemblages (often dominated by forms tol-
erant to low-light levels and high sedimentation rates such as Actinacis,
Bosellini, 1998) and rudists coexisted in the same bioconstructions (e.g.,
Sanders and Baron-Szabo, 1997; Skelton et al., 1997; Grotz, 2003) with
both groups often showing benefits from this coexistence. Ecological
competition between corals and rudists existed (e.g., Kaufmann and
Johnson, 1988). Physicochemical environmental conditions (e.g., sea-
water chemistry, sedimentation and resuspension rates; Sanders and
Baron-Szabo, 1997; Skelton et al.,, 1997; Stanley and Hardie, 1998), fa-
vored the dominance of rudists in the reef development.

Studying the early Paleogene coral communities, which seem to
share characteristics with the Late Cretaceous coral communities,
might help to elucidate the ecological requirements of fossil coral
communities developed in warm oceans of a greenhouse world.

4. Material and methods

To tackle the issue of the evolution of the early Paleogene coral
fossil community, we collected a broad database from the Tethys,
the Atlantic, and the Caribbean realms from low- to mid-latitude car-
bonate settings. The earliest Paleocene is characterized by a gap in the
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fossil record of coral reefs, with the occurrences of early Danian corals
represented by azooxanthellate forms from high latitudes (Kiessling
and Baron-Szabo, 2004), and thus is not included in this work. After
screening the available literature we collected data from 27 localities
(Tables 1 and 2) with early Paleogene coral occurrences spanning the
interval from the middle Paleocene to the early Eocene. This list of
studies represents the sum of current knowledge and it was integrat-
ed with our new data from SW France (Minervois region) and pub-
lished data from SW Slovenia (Zamagni et al, 2009). The
stratigraphic ranges of these studies are plotted in Fig. 2 together
with their paleogeographic positions shown in Fig. 3. In Tables 1
and 2 the main information for each locality is summarized. Compos-
ite data sets are especially susceptible to biases created by uneven
sampling, inadequate systematic, reduced morphological and/or sed-
imentological descriptions. In addition, sampling and identification of
fossil taxa are often linked to coral preservation and diagenesis. This
is partly related to the relatively poor preservation potential associat-
ed with coral aragonite skeletons. In compiling such a database it be-
comes evident that even though coral facies are important
components in a particular locality, they are often poorly described
in terms of morphology and systematic, compared for instance to
foraminiferal assemblages. Additionally, the age of coral-bearing fa-
cies is often difficult to constrain due to the lack of stratigraphical bio-
markers within these facies. Unless biostratigraphic markers are well
preserved (mainly larger benthic foraminifera) or other kinds of age
constraints are available, precise stratigraphic positioning of coral fa-
cies and chronostratigraphic correlations remain problematic. There-
fore, to construct Fig. 2 we had to critically tune the age, depositional
settings, coral frame-building capacity, coral morphology, and inter-
action with other bioconstructors. The age assessment was mainly
based on determination of larger benthic foraminifera index species.
In most studies a more precise age assessment is possible but in
others the exact time frame is less certain. In the Tethyan realm the
biostratigraphic scheme of Serra-Kiel et al. (1998) has been used,
with the regional Ilerdian stage representing the lowermost Eocene
according to Scheibner et al. (2005). This stage was introduced for
marine deposits of the Tethyan realm for which no marine time
equivalent in northern Europe exists (Hottinger and Schaub, 1960).
For the compilation of the different studies a uniform time frame
had to be established, as the studies adopt various age/epoch defini-
tions. For example, the Paleocene is in some instances only subdivided
into Danian and Thanetian and in other studies the Paleocene also in-
cludes the llerdian, or no subdivision into shallow benthic zones exists
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Fig. 3. Global distributions of: a) mid Paleocene, b) late Paleocene, and c) early Eocene coral occurrences, displayed on paleogeographic reconstructions at 55 Ma map (Ocean Dril-
ling Stratigraphic Network online; plate reconstruction data from Hay et al. (1999) and references therein. Numbers refer to those in Fig. 2 and Tables 1 and 2.

or larger foraminifera were not identified. Despite these potential biases
important information about coral diversity and change in community
compositions can be tracked as shown in this study. Sedimentological
and paleoecological evaluations concerning depositional settings (water
depths, water energy, and light intensity) were inferred from the combi-
nation of hydrodynamic energy estimates (textures) and depth-related
components (e.g., algae, foraminifera). We defined as shallow-water
depth the inner ramp (above the fair-weather wave base)/inner platform
depositional settings as well as the euphotic zone (as defined by Pomar,
2001, commonly corresponding to 20-30 m water depth). Intermediate
water depth is usually referred to the mid ramp (above the storm-
wave base) setting and/or the meso-oligophotic zone (as defined by
Pomar, 2001, lower limit in the 50-100 m depth range).

5. Results: evolution of mid Paleocene-early Eocene
coral communities

Even with the uncertainties described above, Fig. 2 highlights some
trends in the evolution of early Paleogene coral assemblages (Table 3).

The middle Paleocene (Table 1) was a time when corals dominated
the reef community (67% of the coral occurrences, Table 3), producing
mainly patch-reefs in shallow-water settings but also reef complexes
(Fig. 3a). In the frame of the low-level diversity of earliest Paleogene
corals, the middle Paleocene coral assemblages can be considered mod-
erately diverse (up to 14 genera), also according to the criteria devel-
oped by Kiessling and Fliigel (2002) (those having between 5 and 25
species of corals). Massive, encrusting, and laminar (or platy) forms
were common (e.g., Actinacis, Goniopora, and astrocoeniids) associated
with branching forms (e.g., Dendrophyllia, Oculina, and Cladocora)

Table 3
Percentages of various categories of coral occurrences for each time interval.
Coral-algal patch Coral-bearing Coral
reefs/barrier reefs mounds knobs
Early Eocene 4 (22%) 4 (22%) 10 (56%)
Late Paleocene 6 (43%) 6 (43%) 2 (14%)
Mid Paleocene 10 (67%) 3 (20%) 2 (13%)




J. Zamagni et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 317-318 (2012) 48-65 59

within bioconstructions in euphotic settings around the Tethys. Along
the margins of the central Tethys corals formed the Alpine-Carpathian
reef belt (loc. 1-2) with development of fringing reefs, while coral-
algal patch-reefs occurred in the AdCP (loc. 3), in the Apulian platform
(Maiella, loc. 6), and Egypt (loc. 10-12). In the eastern Tethys coral-
algal patch-reefs with high diversity occurred in NW India/E Pakistan
(loc. 15). In the Pyrenees (Spain, loc. 4), corals formed extended barrier
reefs during the late Danian with high generic diversity (Baceta et al.,
2005). In other localities corals are present as subordinate components
within mounds dominated by calcareous red algae as in N Iraq (loc. 9)
and SE Tibet (loc. 16). Interestingly, in high latitude regions such as
the Paris basin (40°N, loc. 25) and Patagonia (43°N, loc. 26), corals oc-
curred within coral-algal patch-reef and as coral knobs, respectively.

The transition to the late Paleocene marked a general decrease of
frame-building capacity by corals (coral-algal patch-reefs decline to
43% of the coral occurrences, Table 3), which became subordinate to
calcareous red algae in forming mounds (coral-bearing mounds in
Figs. 2 and 3b and Table 1, 43% of the coral occurrences versus 20%
during the mid Paleocene, Table 3). This shift from corals to other
framework builders (mainly red algae and to a less extent microbes
and foraminifera) is well documented at low (e.g., W Desert, Egypt,
loc. 12) and middle latitudes (AdCP, loc. 3; Pyrenees, loc. 4, in this
area it occurs a bit earlier than the other localities), both in shallow
and moderate water depths. At middle latitudes coral-algal patch-
reefs and reef complex were still present (e.g., Alpine-Carpathian
reef belt, loc.1-2; Maiella, loc. 6). At low latitudes coral assemblages
with moderate diversity (up to 12 genera) occurred as knobs (e.g.,
W Desert, Egypt , loc. 12; NW Somalia, loc. 18) or associated to
other organisms within mounds (Java, loc. 19; Alabama, loc. 25). In
some cases coral assemblages show diversity comparable to that of
the middle Paleocene (up to 13 genera in the AdCP, Zamagni et al.,
2009), while in other localities a decline of diversity is observed (W.
Desert, Egypt, loc. 12; Pyrenees, loc. 4; Maiella, loc. 6). Coral fossils
are usually thickly encrusted by red algae, encrusting foraminifera,
and microbes (AdCP, loc. 3; Pyrenees, loc. 4; W Desert, Egypt, loc.
12; Java, loc. 19; Alabama, loc. 25). In Egypt, for examples, Schuster
(1996) described a shift from coral-algal patch-reefs to algal mounds
and rhodolith beds with rare, encrusted coral fragments. In these late
Paleocene assemblages, laminar and encrusting corals were common,
including Actinacis, Goniopora, and astrocoeniids as dominant forms,
together with branching forms (Stylocoenia, Rhizangia, Dendrophyllia,
Oculina, and Cladocora).

In the earliest Eocene coral occurrences and diversity declined
(Figs. 2 and 3c, Table 2), representing a short-term reversal within a
long-term trend toward increasing diversity (Fig. 1). Corals remained
subordinate to red algae and foraminifera within mounds in both
shallow and intermediate water depths. In the N Calcareous Alps
(loc. 1), coral facies were almost completely replaced by rhodolith
facies (Moussavian, 1984). In the Pyrenees (loc. 4-5), Actinacis
patch reefs were replaced by reefs made by the encrusting foraminif-
era Solenomeris (Plaziat and Perrin, 1992). In other localities corals
still occurred within algal mounds (e.g., Oman, loc. 14; NE India, loc.
20). Importantly, a shift toward coral assemblages dominated by
few species resistant to high turbidity can be observed. Goniopora is
a typical representative (both branching and massive morphologies
depending from the depositional settings), together with Actinacis
(mainly as laminar-platy forms). These genera became dominant
forming knobs (56% of the coral occurrences) within very shallow-
water, high-energy settings (e.g., Pyrenees, loc. 4-5; Oman, loc. 14;
Ionian Island, loc. 7), or within muddy lagoonal deposits (e.g., W De-
sert, Egypt, loc. 12). Interestingly, z- or z-like corals occurred for the
first time in the Cenozoic in the Caribbean realm as isolated knobs
(loc. 21-22-23). The distributions of mid Paleocene-early Eocene
corals point to colonization of broad range of habitats. In association
with this habitat expansion, a progressive reduction in capacity to
form framework occurred. As shown in Table 3, this process is

reflected in the shift from mid Paleocene occurrences mainly repre-
sented by coral-algal patch reefs to coral-bearing mounds common
during the late Paleocene and finally to early Eocene coral knobs typ-
ical of very shallow-water settings. A general feature which charac-
terizes the corals throughout the early Paleogene time is the reduce
colony dimensions usually in the range of centimeters (e.g., AdCP,
loc. 3; Pyrenees, loc. 4-5).

6. Discussion
6.1. Diversity trends in early Paleogene shallow-water biocalcifiers

During the late Paleocene to early Eocene, other groups of photo-
trophic marine organisms underwent rapid radiations. An overview of
the evolution of these biocalcifiers can help to better understand the pa-
leoecology of the early Paleogene coral communities. The Paleocene
shallow-water benthic communities where characterized by a rapid di-
versification of calcareous algae (Fig. 4). Starting from the Maastrichtian
across the whole Paleocene and the early Eocene, calcareous coralline
algae expanded rapidly, with a peak during the early Eocene, followed
by a temporary decline during the middle Eocene (Aguirre et al,
2000). This expansion contradicts the hypothesis that framework build-
ing was reduced due to lack of binders. Modern biofacies dominated by
coralline red algae are known to develop extensively under lower tem-
perature, nutrient-rich, reduced-light conditions (e.g., Gulf of California,
Halfar et al., 2004; SE Asian platforms, Wilson and Vecsei, 2005), and
large depth range (from very shallow, high water energy environments
up to 270 m, e.g,, Littler et al., 1986). The expansion of calcareous red
algae, starting from the late Paleocene, could have been related to a bi-
otic community replacement driven by changes in sediment/nutrient
load, rather than a simple facies shift related to a change in relative
sea level. Short-term pulses of relative sea level rise cannot be excluded
at that time (e.g., Sluijs et al., 2008a). However, rapid and high ampli-
tude sea-level fluctuations are not expected because the polar regions
are considered to have been mostly ice-free. We suggest that during
the late Paleocene-early Eocene, a general increase, as well as frequent
fluctuations, of nutrients forced corals to compete for substrate with
more nutrient-opportunistic sessile organisms, mainly red algae but
also encrusting foraminifera and microbes (e.g., Solenomeris reefs in
the Pyrenees, Plaziat and Perrin, 1992; coral-microbialite mounds in
the AdCP, Zamagni et al., 2009). The increase of nutrients, likely in the
range of mesotrophic conditions, combined with heavy grazing, sug-
gested by progressive increase of bioerosion during the early Paleogene
(Perrin, 2002), might have favored the coralline algae expansion. Ele-
vated nutrients without heavy grazing would have promoted filamen-
tous and macroalgal takeover of the substratum to the detriment of
both coral and coralline algal communities (e.g., coral-macroalgal
phase shift in the Caribbean, Hughes, 1994). We do not have clear evi-
dence that where algae have replaced corals, algal bloom were the
cause, and not simply the consequence, of coral mortality due to
changes of water quality (see McCook et al., 2001 for a review about
competition between corals and algae). In Egypt, however, Schuster
(1996) described enhanced bioerosion and overgrowth of corals by
red algae occurring prior to the main shift from coral growth to rhodo-
liths and algal-mound accretion, suggesting that algal spreading might
have been the consequence of declining condition favorable to coral
growth. Similarly, in the AdCP fluctuation in nutrients and turbidity
promoted repeated shift from corals to microbialite/encrusting forami-
nifera. This processes lead to the accretion of microbialite-coral
mounds, with corals probably declining prior to microbial encrustation
(Zamagni et al., 2009).

Calcified green algae (dasycladaleans) experienced the most rapid
diversification in their evolutionary history, culminating with the
highest number of genera for the Cenozoic during the late Paleocene,
followed by a decline during the early Eocene (Aguirre and Riding,
2005). This decline coincided with the highest levels of pCO, in the
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Fig. 4. Diversity trends of calcareous algae (corallines and dasycladaleans), larger benthic foraminifera and corals during the early Paleogene.

Cenozoic, and might be related to a biocalcification crisis induced by
perturbation of the aragonitic saturation state of sea water (e.g.,
Kleypas and Yates, 2009).

Larger benthic foraminifera increased progressively in diversity
and size starting from the late Paleocene throughout the early and
middle Eocene (Hottinger, 1997, 1998). Scheibner et al. (2005) sug-
gested that the competition between larger benthic foraminifera
and corals might have found the foraminifera winner, being better
adapted to extreme high temperatures. Hallock and Pomar (2009)
interpreted the Paleogene diversification of larger benthic foraminif-
era as a response to warmer deep sea water combined to minimal
temperature gradient between the thermocline and the deep sea. Al-
ternatively, the early Paleogene larger benthic foraminifera might
have been better adapted to thrive under frequent fluctuations of nu-
trients, as suggested by studies of living representatives and feeding
experiments (e.g., Langer and Hottinger, 2000; Hallock et al., 2003;
Renema, 2008). Additionally, larger benthic foraminifera secrete cal-
cite shells and recent studies have demonstrated that they were not
impacted adversely by the ocean acidification that might have charac-
terized the PETM (Robinson, 2011). However, experimental studies
on benthic foraminifera have demonstrated the existence of a strong
biological control in their biomineralisation processes, with seawater
chemistry exerting a relatively weak effect (e.g., Erez, 2003; Bentov
and Erez, 2006).

6.2. Distribution of reef coral communities and paleoceanographic
changes

6.2.1. Sea-surface temperatures

The progressive loss of reef-building capacity by the corals
throughout the mid Paleocene-early Eocene has been repeatedly dis-
cussed as mainly related to global high sea-surface temperatures
(SST) (e.g., Scheibner and Speijer, 2008a, b; Kiessling and Simpson,
2011). Elevated SST (Fig. 5), up to 33 °C-34°C during the PETM

(Zachos et al., 2006) and the EECO (Pearson et al., 2007), might
have been detrimental for reef development. Nonetheless, this study
shows that throughout the early Paleogene corals continued to colo-
nize a broad range of settings, without clear bias toward deep waters
and high latitudes, as possible refugia against high SST and high solar
irradiance (Figs. 2 and 3). Bleaching (loss of symbionts or chlorophyll
pigments, Brown, 1997) can be induced by a diverse range of stress
factors such as low salinity, low temperature, high sedimentation,
aerial exposure, and cyanide exposure. At present, the combination
of high irradiance and anomalously warm sea surface temperatures
seems to be the primary triggering condition for large-scale mass
bleaching events (reviewed by Hoegh-Guldberg, 1999). However,
modern bleached and unbleached corals are often encountered side
by side (e.g., Loya et al., 2001; Hughes et al., 2003), with different spe-
cies responding quite differently to bleaching (e.g., Marshall and
Baird, 2000; Jokiel and Brown, 2004). Even the same species can
respond differently, depending upon its symbionts, or the same
colony, depending upon symbiont distributions and exposure to
light (Rowan, 2004; Berkelmans and van Oppen, 2006; Abrego et al.,
2008). Bleaching susceptibilities may have changed over time as a re-
sult of ongoing adaptation to adverse environmental conditions (e.g.,
evolution of temperature tolerance, Hughes et al., 2003) with the de-
velopment of alternative life strategies at times of prominent climate
changes, as suggested by recent work on the effects of thermally fluc-
tuating environments on coral thermal tolerance (e.g., Jones et al.,
2008; Oliver and Palumbi, 2011). Two main mechanisms may
occur to shift the thermal tolerances of corals and their endosymbi-
onts: 1) coral adaptation via natural selection for heat-tolerant line-
ages of the coral leading to a community compositional shift toward
a more thermally-tolerant suite of coral species; 2) natural selection
for heat-tolerant lineages of the algal endosymbiont harbored by
the coral host. Concerning the first mechanism, the common occur-
rences in the early Paleogene, especially in the early Eocene fossil re-
cord, of massive corals belonging to the family Poritidae (especially
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Fig. 5. Key early Paleogene climatic events (Early Eocene Climatic Optimum, EECO, culminating at ~51 Ma; ETM-2/Elmo event at ~53.6 Ma, ETM-3/X event at ~52.5 Ma, Paleocene-
Eocene Thermal Maximum, PETM, at ~55.5 Ma) in relation to paleoceanographic changes in shallow waters. In this model the evolution of coral communities is correlated with
increase of nutrient/sediment delivery and CO, buildup, with maximum reduction in frame-building capacity during the early Eocene. The fluctuating nature of continental weath-
ering rate and nutrient levels are predicted consequences of the model presented in this work.

Goniopora and Actinacis) point to a selection toward heat-tolerant
communities at this time. Today, corals of the family Poritidae appear
as the less susceptible to bleaching with Goniopora being one of the
most resistant taxa to thermal stress (e.g., Marshall and Baird,
2000). The second mechanism was likely not so important in the evo-
lution of some thermal tolerance in the early Paleogene corals.
According to the diversification of Symbiodinium zooxanthellae clades
reported by Pochon et al. (2006), at this time the diversity of the algal
endosymbionts was low.

Thermal stress alone, however, does not account for the evolution
of corals during the early Paleogene and does not resolve the

controversy concerning the dramatic drop of coral-reef production
close to the P-E boundary and during the early Eocene concomitant
with the long-term increase in coral diversity.

6.2.2. Surface productivity and sediment load

Although fluctuations in nutrient loading have long been known to
affect coral growth (e.g., Hallock and Schlager, 1986) and coral-reef de-
velopment (Hallock, 1988), these factors have been neglected in the
study of the early Paleogene coral evolution. In addition to these factors,
it has recently been demonstrated (Wooldridge, 2009; Wooldridge and
Done, 2009) that corals which regularly experience poor water quality
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conditions (elevated concentrations of dissolved inorganic nitrogen)
are less ‘resistant’ to thermal stress and display higher bleaching sensi-
tivity (per unit increase in SST). A progressive increase of warmth and
humidity during the middle Paleocene to early Eocene, mainly related
to CO, buildup (Pearson and Palmer, 2000), intensified the continental
weathering with increasing/fluctuating runoff and nutrient delivery to
the oceans (e.g., Crouch et al., 2003; Pagani et al., 2006; Zachos et al.,
2006; Giusberti et al., 2007; Nicolo et al., 2007; Sluijs et al., 2008b;
Smith et al., 2008; Agnini et al., 2009; Sluijs and Brinkhuis, 2009). The
shallow waters were probably not subject to extreme peaks in nutri-
ents, as indicated by the nature of the biotic assemblage dominated by
larger benthic foraminifera rather than small opportunist benthic
foraminifera and other heterotrophic organisms (e.g., Hallock, 1988;
Hallock et al., 2003). Based on our study, however, we suggest an in-
crease/fluctuation in nutrient availability in the mesotrophic range.
This change in the trophic conditions was likely related to the cumula-
tive impact of repeated pulses that occurred over tens of thousands
of years. A long-term chronic increase of nutrient levels over millions
of years would have probably caused a major shift in the benthic com-
munities with heterotrophic organism dominant (e.g., Mutti and
Hallock, 2003).

This trophic conditions likely enhanced competition, as reflected
by the shift in the sessile community from the middle to the late
Paleocene-early Eocene. Corals were forced to compete with other
faster-growing, nutrient-opportunist sessile organisms, mainly coral-
line algae and encrusting foraminifera. Additionally, bioerosion in-
creased during the early Paleogene (Perrin, 2002) suggesting an
increase of surface productivity. Under such conditions, the corals of
the late Paleocene and early Eocene developed adaptations to nutri-
ent replete conditions, similar to those of modern zooxanthellate
corals living under mesotrophic conditions (Halfar et al., 2005).
Coral morphologies changed throughout the mid Paleocene to the
early Eocene time span, with a clear shift from more variable mor-
phologies during the mid Paleocene (massive, laminar/platy, encrust-
ing, and branching forms) toward earliest Eocene assemblages
dominated by growth forms suitable for low-light conditions (e.g.,
massive and encrusting forms in nearshore settings with reduced
water quality combined with high water energy, and laminar/platy
forms in mesophotic settings). The general limited dimension of the
coral colony size (range of centimeters, but the number of detailed
studies is limited) might result from rapid population dynamics
(e.g., high recruitment rates and mortality at young age) as response
to frequent environmental perturbations (e.g., changes of sediment/
nutrients load, Te, 1992). The early Paleogene coral assemblages are
dominated by Goniopora (both branching and massive forms) and
Actinacis (platy form) along with massive astrocoeniids and faviids
(Baron-Szabo, 2006). Goniopora and Actinacis are pioneer genera tol-
erant to both turbidity and high nutrients (Schuster, 1996; Bosellini,
1998; Rosen, 2000). Additionally, the common co-occurrence in the
same assemblages of dendroid, mainly azooxanthellate forms as Den-
drophyllia, Oculina, and Cladocora (e.g., Schuster, 1996; TurnSek and
Drobne, 1998; Baceta et al., 2005) further supports the hypothesis
of an increase of surface productivity. Increased nutrients might
have caused slower coral growth rates, resulting in regional decline
in reef-building capacity. Similar processes have been suggested to
explain “reef gap” in the Caribbean during the Miocene (Johnson
and Pérez, 2006) and the Oligocene/Miocene transition (Edinger
and Risk, 1994). Growth rate of adult corals, however, might remain
high as nutrient flux increase, with a decline of net framework pro-
duction due to coral cover decline and bioerosion rate increase con-
verting framework to sediments (Hallock, 2001). Similar processes
might account for the progressive increase of mounds with abundant
carbonate mud during the late Paleocene. Unfortunately, no studies
exist concerning the coral growth rates in fossil corals of early Paleo-
gene. Therefore, this is a hypothesis that remains to be tested. The
perturbation of the nutrient cycle may have been a major cause of

regional decline in coral reef production, especially in partly land-
locked regions of the Tethys. This mechanism alone, however, fails
to explain the progressive shift observed from reef-building to non-
reef building coral communities during the early Paleogene.

6.2.3. Ocean chemistry

The late Paleocene-earliest Eocene global warming events are all
associated with sea floor carbonate dissolution and negative carbon
excursions (Zachos et al., 2010 and references therein). Changes in
surface sea-water chemistry, due to rapid accumulation of atmo-
spheric CO; (Fig. 5) and consequent ocean acidification, has been sug-
gested as important factor in reduced reef production at the
Paleocene-Eocene boundary (e.g., Kiessling and Simpson, 2011). Ex-
periments in artificial seawaters demonstrated that scleractinian
corals calcified at slower rate under unfavorable seawater chemistry
(e.g., Langdon et al, 2000; Ries et al., 2006) as they would have
done during the early Paleogene. We suggest that slow calcification
rates resulting from the production of aragonitic skeletons in chemi-
cally unfavorable seawater of the early Paleogene (ocean Mg/Ca
ratio<2), probably contributed to the generally limited capacity of
corals to build extensive reefs. Additionally, slow calcification rates
would have reduced the ability of corals to outgrow their fast-
growing competitors, and their associated fragile skeletons would
have left the corals prone to fragmentation and bioerosion. As well
as the chance of preservation might have been reduced due to a less
effective calcification (e.g., reduced calcification of Porites in high lat-
itude settings, Halfar et al., 2005; Lough and Barnes, 2000). So far,
there is no convincing evidence for surface-water acidification during
the PETM (e.g., Kump et al., 2009 and reference therein). PETM car-
bon release, and hence acidification, was likely too slow limiting the
magnitude of surface water acidification (e.g., Zachos et al., 2008;
Ridgwell and Schmidt, 2010). The results from these recent studies
(e.g., Gibbs et al, 2006, 2010; Ridgwell and Schmidt, 2010;
Robinson, 2011) all suggest that the PETM may only provide a mini-
mum estimate of the response of marine calcifiers to future surface
water ocean acidification. Interestingly, Cai et al. (2011) observed
that acidification of coastal waters can be enhanced by eutrophica-
tion, thus it might be possible that similar processes observed today
in the northern Gulf of Mexico and in the East China Sea have affected
the coastal waters during the PETM and other early Paleogene
hyperthermal events. Thus, further studies to test the hypothesis
that coral calcification rates were slower as a response to a possible
shallow-water ocean acidification associated to the PETM would add
useful information to this debate.

Today Caribbean is characterized by a decline of reefs (e.g., Porter
et al., 2002), a persistence of patch reefs with significantly high coral
cover, richness, and habitat complexity (e.g., Dupont et al., 2008), and
zooxanthellate coral communities thriving in deeper depths in the
Gulf of Mexico (e.g., Jarrett et al., 2005). This situation suggests that
selected z-coral assemblages may adapt to the ongoing climate
changes and associated feedback processes evolving alternative strat-
egy of life, preserving diversity and continuing to contribute to the
carbonate sediment production. The early Paleogene fossil examples
give positive clues to support this hypothesis.

7. Conclusions

* Analysis of coral occurrences during the early Paleogene show that
the evolution of these coral communities was characterized by a pro-
gressive reduction of reef-building potential. In particular, 1) the mid
Paleocene record was dominated by shallow-water coral-algal patch-
reefs/reef complexes (67%), 2) the late Paleocene record was charac-
terized by small shallow-water coral-algal patch-reefs (43%) together
with coral-bearing mounds at shallow and intermediate depths (43%)
where corals are subordinated to other bioconstructors (mainly cal-
careous red algae and foraminifera), 3) the early Eocene record was
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dominated by isolated coral knobs mainly in shallow-water settings

(56%).
 Coral diversity slightly decreased across the mid Paleocene-early
Eocene in association with a shift toward communities dominated
by forms tolerant to thermal stress and high turbidity/nutrients
levels (mainly Actinacis, Goniopora), especially during the early
Eocene. These changes document the capacity of corals to colonize
a broad range of settings as result of adaptations to adverse envi-
ronmental conditions.
We suggest that the progressive expansion of coral communities that
did not build reefs from the middle Paleocene to the early Eocene was
likely related to perturbation of the ocean chemistry due to high at-
mospheric pCO, levels, combined with moderately high nutrient
loads. These stressors might have strongly affected the coral reef-
framework production limiting the grow rates of coral colonies, and
lowering their capacity to compete with faster-growing, nutrient-
opportunistic organisms and bioeroders.
The hypothesis that coral calcification rates were slower during the
early Paleogene especially as a consequence of ocean acidification
affecting shallow-water settings during the PETM and other early
Paleogene hyperthermal events deserve further studies in order to
add useful information to the debate whether there was a signifi-
cant acidification affecting shallow-water settings.
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